Leaf development in the single-cell C4 system in Bienertia sinuspersici: expression of genes and peptide levels for C4 metabolism in relation to chlorenchyma structure under different light conditions.
نویسندگان
چکیده
Bienertia sinuspersici performs C(4) photosynthesis in individual chlorenchyma cells by the development of two cytoplasmic domains (peripheral and central) with dimorphic chloroplasts, an arrangement that spatially separates the fixation of atmospheric CO(2) into C(4) acids and the donation of CO(2) from C(4) acids to Rubisco in the C(3) cycle. In association with the formation of these cytoplasmic domains during leaf maturation, developmental stages were analyzed for the expression of a number of photosynthetic genes, including Rubisco small and large subunits and key enzymes of the C(4) cycle. Early in development, Rubisco subunits and Gly decarboxylase and Ser hydroxymethyltransferase of the glycolate pathway accumulated more rapidly than enzymes associated with the C(4) cycle. The levels of pyruvate,Pi dikinase and phosphoenolpyruvate carboxylase were especially low until spatial cytoplasmic domains developed and leaves reached maturity, indicating a developmental transition toward C(4) photosynthesis. In most cases, there was a correlation between the accumulation of mRNA transcripts and the respective peptides, indicating at least partial control of the development of photosynthesis at the transcriptional level. During growth under moderate light, when branches containing mature leaves were enclosed in darkness for 1 month, spatial domains were maintained and there was high retention of a number of photosynthetic peptides, including Rubisco subunits and pyruvate,Pi dikinase, despite a reduction in transcript levels. When plants were transferred from moderate to low light conditions for 1 month, there was a striking shift of the central cytoplasmic compartment toward the periphery of chlorenchyma cells; the mature leaves showed strong acclimation with a shade-type photosynthetic response to light while retaining C(4) features indicative of low photorespiration. These results indicate a progressive development of C(4) photosynthesis with differences in the control mechanisms for the expression of photosynthetic genes and peptide synthesis during leaf maturation and in response to light conditions.
منابع مشابه
The unique structural and biochemical development of single cell C4 photosynthesis along longitudinal leaf gradients in Bienertia sinuspersici and Suaeda aralocaspica (Chenopodiaceae)
Temporal and spatial patterns of photosynthetic enzyme expression and structural maturation of chlorenchyma cells along longitudinal developmental gradients were characterized in young leaves of two single cell C4 species, Bienertia sinuspersici and Suaeda aralocaspica Both species partition photosynthetic functions between distinct intracellular domains. In the C4-C domain, C4 acids are formed...
متن کاملThe cytoskeleton maintains organelle partitioning required for single-cell C4 photosynthesis in Chenopodiaceae species.
Recently, three Chenopodiaceae species, Bienertia cycloptera, Bienertia sinuspersici, and Suaeda aralocaspica, were shown to possess novel C(4) photosynthesis mechanisms through the compartmentalization of organelles and photosynthetic enzymes into two distinct regions within a single chlorenchyma cell. Bienertia has peripheral and central compartments, whereas S. aralocaspica has distal and pr...
متن کاملTransit peptide elements mediate selective protein targeting to two different types of chloroplasts in the single-cell C4 species Bienertia sinuspersici
Bienertia sinuspersici is a terrestrial plant that performs C4 photosynthesis within individual cells through operating a carbon concentrating mechanism between different subcellular domains including two types of chloroplasts. It is currently unknown how differentiation of two highly specialized chloroplasts within the same cell occurs as no similar cases have been reported. Here we show that ...
متن کاملProof of C4 photosynthesis without Kranz anatomy in Bienertia cycloptera (Chenopodiaceae).
Kranz anatomy, with its separation of elements of the C4 pathway between two cells, has been an accepted criterion for function of C4 photosynthesis in terrestrial plants. However, Bienertia cycloptera (Chenopodiaceae), which grows in salty depressions of Central Asian semi-deserts, has unusual chlorenchyma, lacks Kranz anatomy, but has photosynthetic features of C4 plants. Its photosynthetic r...
متن کاملThe C-terminus of Bienertia sinuspersici Toc159 contains essential elements for its targeting and anchorage to the chloroplast outer membrane
Most nucleus-encoded chloroplast proteins rely on an N-terminal transit peptide (TP) as a post-translational sorting signal for directing them to the organelle. Although Toc159 is known to be a receptor for specific preprotein TPs at the chloroplast surface, the mechanism for its own targeting and integration into the chloroplast outer membrane is not completely understood. In a previous study,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 148 1 شماره
صفحات -
تاریخ انتشار 2008